
accULL: An OpenACC Implementation with
CUDA and OpenCL Support

Ruymán Reyes, Iván López-Rodŕıguez, Juan J. Fumero, Francisco de Sande

Dept. de E. I. O. y Computación
Universidad de La Laguna, 38271–La Laguna, Spain

{rreyes,ilopezro,jfumeroa,fsande}@ull.es

Abstract. The irruption in the HPC scene of hardware accelerators,
like GPUs, has made available unprecedented performance to develop-
ers. However, even expert developers may not be ready to exploit the new
complex processor hierarchies. We need to find a way to leverage the pro-
gramming effort in these devices at programming language level, other-
wise, developers will spend most of their time focusing on device-specific
code instead of implementing algorithmic enhancements. The recent ad-
vent of the OpenACC standard for heterogeneous computing represents
an effort in this direction. This initiative, combined with future releases
of the OpenMP standard, will converge into a fully heterogeneous frame-
work that will cope the programming requirements of future computer
architectures. In this work we present accULL, a novel implementation of
the OpenACC standard, based on the combination of a source to source
compiler and a runtime library. To our knowledge, our approach is the
first providing support for both OpenCL and CUDA platforms under
this new standard.

1 Introduction

The widespread use of graphics accelerators for general purpose computing has
leveraged the entry cost of high performance computer systems. A modest com-
modity computer in combination with a graphic card constitutes a powerful tool
which empowers users to solve problems with a significant size so far unavailable
without the aid of large scale computers.

Despite the improvements achieved in the hardware field, there is still a lack
of parallel problem solving environments that can help scientists to use easily and
efficiently these hybrid architectures. From our point of view, at this moment,
efforts have to be directed towards the development of high level abstractions of
these heterogeneous environments. This will allow more users to take advantage
of these architectures without the need of detailed hardware knowledge.

CUDA is the most mature and extended approach to GPU programming, al-
though currently only supports Nvidia devices. Despite of being partially simple
to build a code using this tool, achieving good performance rate usually requires
a noticeable coding and optimisation effort.

The OpenCL standard represents an effort to create a common program-
ming interface for heterogeneous devices, which many manufacturers have joined.
However, its programming model is not simple.

The presentation during Seattle SC2011 of the new OpenACC standard for
heterogeneous computing [4] clearly represents a major effort in the aforemen-
tioned direction of leveraging the development effort. Following the OpenMP
approach, in the OpenACC API, the programmer annotates its sequential code
with compiler directives, indicating those regions of code susceptible to be exe-
cuted in the the GPU. The simplicity of the model, its ease of adoption by non
expert users and the support received from the leading companies in this field
make us believe that it is a long-term standard.

Prior to OpenACC, the PGI Accelerator model [6] proposed a high-level pro-
gramming model for accelerators, such as GPUs, similar in design and scope to
the widely-used OpenMP directive approach. Also, the CAPS HMPP [1] toolkit
is a set is a set of compiler directives, tools and software runtime that supports
parallel programming in C and Fortran. Both PGI and CAPS are founders of
the OpenACC standard, and have recently announced versions of their tools
compliant to the standard.

As a continuation of our recent years work [5], here we present a first re-
lease of our implementation of the OpenACC standard. We offer support for
the most common used constructs, and we are able to run in both CUDA and
OpenCL platforms. To the best of our knowledge, ours is the first open-available
implementation of the standard that supports OpenCL. In addition, we present
results using both CPU and GPU OpenCL platforms. User can select the de-
sired platform using the appropriate environment variable, conforming to the
standard.

The contributions of this work are manifold: (a) It represents one of the first
non-commercial implementation of the OpenACC standard. (b) This is the first
implementation, as far as we know, with support for both OpenCL and CUDA
platforms. (c) We present a runtime suitable to be decoupled from our compiler
and used together with a different compiler infrastructure. (d) We validate our
approach using codes from widely available benchmarks and using both GPU
and CPU devices.

The rest of the paper is organized as follows. Section 2 discusses the imple-
mentation of our compilation framework. In Section 3 we expose the key ideas
behind our approach. We guide our explanations through the use of a code
example. Also in Section 3 we present computational results for the guiding ex-
ample and three additional well-known algorithms. Finally, Section 4 includes
the conclusions we have been able to achieve so far and ideas about future work
regarding this framework.

2 The implementation

Our approach is a two-layer based implementation composed by a source to
source compiler and a runtime library, in a similar fashion to other compiler

infrastructures. However, instead of generating a final binary file, the result of
our compilation stage is a a project tree hierarchy with compilation instructions,
suitable to be modified by advanced end-users. Default compilation instructions
enable average users to generate an executable without additional effort. The
aim of this approach is to maintain a low development effort in the programmer
side, while keeping the opportunity window for further optimizations performed
by high-skilled developers.

The compiler is based on our YaCF research compiler framework, while the
runtime (Frangollo) has been designed from scratch. We have named accULL to
the combination of our compiler driver and the runtime.

YaCF translates the annotated C+OpenACC source code into a C code with
calls to the Frangollo API. The YaCF compiler framework [5] has been designed
to create source to source translations. It is intended to be a fast-prototyping tool
which allows compiler developers to write portable source to source transforma-
tions in just a a few lines of Python code. The framework is available as an open
source tool 1. On top of the YaCF infrastructure, we have built a set of Python
modules, capable of extracting the kernel code from the annotated source and
replace it with the appropriate runtime calls. Both OpenCL and CUDA kernels
are generated from the extracted block statements

User annotations are validated against data dependency analysis. A warn-
ing is emitted if variables are missing. Also, we can check whether a variable is
read-only or not, to allocate the appropriate type of memory. Source to source
translation injects a set of Frangollo calls within the serial code. Whenever these
calls are issued, control is deferred to Frangollo runtime, who will execute the
code of the proper API call or whatever other code it might require (for ex-
ample, to handle previous asynchronous operations). Frangollo deals with two
major issues of any OpenACC implementation: memory management and kernel
execution.

It is important to take into account that nowadays compute accelerator de-
vices do not share the host processor address space. Therefore, it is critical to
transparently handle the existence of several instances of an user variable on
different devices. To address this situation, our runtime uses a base pointer ad-
dress detection mechanism to match each host variable to its device counterpart.
Using this mechanism, we are able to track accesses to variables across interpro-
cedural calls. The only exception to this behaviour is the implementation of the
acc host construct, which, by specification definition, requires a device specific
pointer, and the deviceptr clauses, which are not currently implemented.

Memory transfers are handled on demand by Frangollo. No assumption can
be done with respect to the time ordering of these transfers, apart from their
completion before kernel execution. It is possible to use Frangollo without our
compiler framework, and the software architecture based on components and
interfaces would facilitate porting the runtime to other kind of devices or creating
new bindings for different languages.

1 http://code.google.com/p/yacf/

Table 1: Compliance with the OpenACC 1.1 standard (constructs)
Construct Status Description
kernels Implemented Kernels for OpenCL and CUDA are gen-

erated for each loop inside the scope
loop Implemented Indicates a potential accelerator kernel.

Some restrictions apply (e.g., no external
definitions)

kernels loop Implemented A kernel will be extracted. Dependency
analysis is used to check and allocate RO
variables if possible.

parallel Not implemented -
update Implemented Mixing host and device clauses in the

same construct does not work, they must
be separated

copy, copyin,
copyout, . . .

Implemented Runtime dynamically handles memory
transfers

pcopy, pcopyin,
pcopyout ,. . .

Implemented Runtime dynamically handles memory
transfers when required

async Not implemented -
deviceptr clause Not implemented -
host Partially implemented Our framework generates the right code,

but we still have to solve portability is-
sues between OpenCL and CUDA

name Not in standard Optional clause to name a particular acc
region or loop and refer it from an exter-
nal optimization file at compile time.

Frangollo is divided into separate pluggable components. A common compo-
nent serves as an abstract interface to all kind of components. Generic operations
over devices, like memory transfers or kernel execution, are mapped on top of an
abstract interface. Operations at this level refer to three main objects: Context,
Devices and Variables. Components instantiate the basic operations to perform
the actual work. Interfaces access the abstract layer without requiring to know
which component is enabled or not. Frangollo’s API provide high level entry
points to the runtime, independent from the destination platform. The com-
piler can emit these generic runtime calls, like registerVar, createContext or
launchKernel, and Frangollo can handle the rest of the work, i.e, choosing the
appropriate platform, load the kernel file, estimate the best grid configuration,
copyin/out the result and even perform reductions over the selected variables.

YaCF supports most of the syntactic constructs in the OpenAcc 1.1 spec-
ification, but some of them are silently ignored. In addition, although some
operations inside Frangollo runtime are handled asynchronously, support for the
async OpenACC clause has not been implemented yet. Table 1 describes some
of the constructs implemented in accULL.

Being an initial release, our approach allows translating to CUDA/OpenCL a
comprehensive set of codes properly annotated, as we show in Section 3. Never-
theless, at this point, we do not aim to create a full commercial implementation
of the standard, but a research tool to demonstrate its potential.

3 Evaluation

To evaluate our accULL OpenACC implementation, we have used codes from
different benchmarks and tested them on the next four different platforms:

– M1: Desktop computer with an Intel(R) Core(TM) i7 930 processor (2.80
GHz), with 1MB of L2 cache, 8MB of L3 cache, shared by the four cores.
The machine has 4 GB RAM and two GPU devices are attached:
• M1a: Tesla C1060 with 240 multiprocessors, 3 GB memory
∗ Bandwidth from host to device: 2.40 GB/s
∗ Bandwidth from device to host: 2.29 GB/s

• M1b: Tesla C2050 with 448 multiprocessors, 4 GB memory
∗ Bandwidth from host to device: 2.35 GB/s
∗ Bandwidth from device to host: 2.20 GB/s

– M2: One cluster node consisting on two quad core Intel Xeon E5410 (2.25GHz)
processors, 24 GB memory and an attached Fermi C2050 card with 448 mul-
tiprocessors and 4 GB memory.

– M3: Laptop computer with one Intel(R) Core(TM) i3 CPU M 350, using Hy-
perthreading to enable four virtual processors, 3GB RAM, and an integrated
Nvidia OPTIMUS graphic card.

– M4: A second cluster node. M4 is a shared memory system, with 4 Intel(R)
Xeon(R) E7 4850 CPU, with 2.50MB L2 cache and 24MB L3 cache (for all
its 10 cores). 6GB of memory are available per core.

With platforms M1a / M1b we mimic the usual scenario of an OpenACC
developer: A slightly experienced user interested in improving the performance
a scientific code can purchase a new GPU card and plug in it into her desktop
computer. It is a relatively cheap platform as opposed to a multinode cluster
and could achieve a combined peak theoretical performance 478.36 GFLOPs in
double performance (77.76 GFLOPs from Tesla C1060 + 345.6 GFLOPs from
Tesla C2060 + 55 GFLOPs from main processor). This kind of user might have
some insight in programming and even in GPU computing, but she is not an
expert. Starting with his own serial code and using an OpenACC compliant
compiler, this user will take advantage of the GPUs without investing excessive
time in low level programming.

M2 is a node of a common multinode cluster. Nowadays clusters are composed
by multicore processors and GPU devices, thus it is possible to take advantage
of OpenACC in these platforms. Moreover, our implementation integrates seam-
lessly with MPI programs, and can be used to take advantage of the attached
GPU devices without additional effort.

M3 represents a usual nowadays medium-end laptop computer. It uses reduced
versions of desktop GPUs that support GPGPU computing. Laptop computers
are not relevant in terms of HPC, however, accULL is suitable for other environ-
ments wherever GPU computing could be beneficial.

M4 is a shared memory system that showcases an alternative case use of
OpenCL. Nowadays shared memory machines feature several CPUs with sev-
eral cores on each. These cores also contain vector processing units that require

particular compiler support (or a deep understanding of these technologies) to
unleash their potential. There are implementations of OpenCL, like the Intel
OpenCL SDK or the AMD APP SDK, targeting these shared memory ma-
chines. Writing algorithms in OpenCL is not an effortless task, but it allows
a better mapping of hardware resources and improve thread scheduling. Using
CPU-targeted OpenCL platforms along with OpenACC represents an interesting
alternative to traditional OpenMP programming that we will explore in different
examples. Our runtime detects whether the platform is a GPU or a CPU and
uses the appropriate variable register and copy method, without requiring to
know this parameter at compile time.

3.1 Molecular Dynamic simulation

1 int main (. . .) {
2 . . .
3 // I n i t i a l energy ca l cu l a t i on
4 compute (position , velocity , mass , force , &potential , &kinetic) ;
5 . . .
6 // (S) Simulation
7 for (i = 0 ; i < NSTEPS ; i++) {
8 compute (position , velocity , mass , force , &potential , &kinetic) ;
9 printf (. . . , potential , kinetic) ;

10 update (position , velocity , mass , force , &potential , &kinetic) ;
11 }
12 . . .
13 }
14 void compute (. . .) {
15 // (C) Compute forces
16 for (. . .) {
17 }
18 }
19 void update (. . .) {
20 // (U) Update v e l o c i t y / pos i t i on
21 for (. . .)
22 for (. . .) {
23 . . .
24 }
25 }

Listing 1.1: Sketch of MD simulation in OpenACC

Given positions, masses and velocities of np particles, the pseudo code shown
in Listing 1.1 computes the energy of the system and the forces on each par-
ticle. The code is a C implementation of a simple Molecular Dynamics (MD)
simulation. It employs an iterative numerical procedure to obtain an approxi-
mate solution whose accuracy is determined by the time step of the simulation.
Particles are represented by three three-dimensional double precision matrices:
Position, Velocity and Force (parameters). Rows of each matrix represent a par-
ticle, whereas columns represent a dimension. For example, the coordinate {3, 1}
contains the parameter value for the particle number three in dimension one.

After an initial forces computation, on each simulation step, the algorithm
performs two basic operations: compute (C) and update (U). C operation con-
sists of several nested loops computing the forces for each position. An external
loop iterates over all particles computing its forces in the current simulation step.
This requires computing the distance among all other particles, hence accessing

Version Time transfer in Time transfer out Kernel Time Total time % Speedup
Naive Approach < 0.02s 0.0127834s 5.69122s 5.791388s -
Using a data clause < 0.02s 0.0121639s 5.63023s 5.729317s 1%
Splitting C loops < 0.02s 0.0120155s 3.87633s 4.046456 30.1%

Table 2: Time per phase and speedup for each incremental optimization over the naive
implementation, as measured in M3 using the Intel OpenCL SDK over the CPU. In this
situation, using the data clause does not represent and important performance benefit,
due to the fact that (1) Frangollo OpenCL implementation uses the native pointer
whenever possible and (2) Intel OpenCL features lower initialization time than GPU
approaches

the position matrix, and computes the total potential and kinetic energy of
the system, which requires access to the velocity matrix. In terms of the data
access pattern, the code is highly un-coalesced, requiring several non-contiguous
loads to compute each particle. In addition, it features several costly double pre-
cision operations (sqrt, sin and cos) which traditionally perform badly on GPU
devices. The U operation is simply a for loop that runs over the particles, up-
dating their positions, velocities and accelerations. C is more compute–intensive
than U.

A naive porting of this code using OpenACC directives would consist into
adding the kernels loop construct to the top of the outermost loops in both
routines (before C and U in Listing 1.1), and writing the appropriate copy
clauses to indicate variable directionality related to the loop.

(a) MD in M3 (b) MD in M4

Fig. 1: (a) Performance comparison of the (best) OpenACC implementation vs.
OpenMP in M3. OpenCL uses Intel OpenCL SDK over the CPU. CUDA version uses
the CUDA 4.0 driver using the laptop’s GPU. The largest problem size could not be
executed in GPU due to the lack of graphics memory. It is worth to note the flexibil-
ity of the runtime, and how it is able to match OpenMP performance despite of the
runtime overhead. (b) Performance comparison of the (best) OpenACC implementa-
tion with OpenMP in M4. OpenCL uses Intel OpenCL SDK over the CPU. OpenMP
implementation was provided by GCC version 4.4.5.

In this case, our compiler would extract the kernel from the loops and inject
the appropriate runtime calls. Each time these functions are executed, memory
transfers between host and GPU will take place. Transfer time between host
and GPU could represent a significant percentage of the total time. Developers
should take into account that the outstanding performance achieved by acceler-
ator devices can be easily hidden by an excessive memory transfer time. Usage
of profiling tools is highly recommended to detect bottlenecks.

OpenACC features a data directive that enables to create a data region
where the information of the indicated variables is transferred into the GPU,
and back to the host at the end of the data region. accULL creates a context at
this point, and the directionality information provided through the copy clauses
is used to register the variables in the runtime. In this case, we precede the S

loop with the aforementioned data construct, indicating that the parameters
Force, Position, Velocity and Acceleration can be transferred into the device at
this point. From now on, all references inside a kernel to these variables will
not require a memory transfer from the host, as they are all already stored on
the device. When entering kernels inside C and U functions, the runtime will
not create a new context, but it creates a new scope level within the existent
context. With this method, we ensure that variables are registered once and
directionality from higher scopes is preserved. However, new variables might be
added to these nested constructs. Existence and directionality of these variables
inside the device is restricted to the scope of the current scope. In the MD code
example, we require the variables pot and kin to be transferred in/out between
iterations in order to show the appropriate information to the user. However,
as both pot and kin are registered within an inner scope, whenever these inner
scopes are exhausted, variables are transferred back from the device to the host.

accULL enables users to perform incremental parallelization over GPU devices
with minor effort. Traditional GPU performance tools can be used with the
resulting codes. For example, in the MD code, the Nvidia profiler shows that
more than 80% of the time is devoted to the C kernel. As stated before, this
kernel is highly compute-intensive, as it features un-coalesced memory accesses
and costly/non parallel floating point operations. One possible solution is to
split this kernel into several smaller ones, to increase coalescence. This could be
considered counterintuitive in traditional CPU programming, where processor
features large caches, but in GPUs it is a good idea. In order to rewrite this
kernel into smaller ones, a CUDA developer would require a considerable effort,
as she would be forced to write additional kernel calls, memory transfers, etc.. In
OpenACC, the programmer only needs to split the sequential code and put the
appropriate directives on the new loops. The compiler will extract the required
kernels.

accULL provide the means to execute our codes on several platforms, not
only restricted to GPU devices, with a single source code. Performance figures
for the low-end system M3 are shown in Figure 1a. On the other hand, Figure
1b showcases the benefit of using an OpenCL implementation using an high-end
shared memory multiprocessor (M4).

Version Time transfer in Time transfer out Kernel time Total time % Speedup
Naive Approach 0.02524s 0.016229s 1.03017s 3.747910s -
Using a data clause 0.01133s 0.016193s 1.02849s 1.433504s 61%
Splitting C loops > 0.01s 0.016176s 0.23832s 0.434439s 88.4%

Table 3: Time per phase and speedup for each incremental optimization over the
naive implementation, as measured in M2 using the Nvidia CUDA platform over the
GPU. The cost of the CUDA calls, context initialization and memory transfers were
noticeable in this case, thus using the data clause improved performance.

Tables 2 and 3 show detailed timing information for transfers, kernel and
total time obtained using Frangollo’s internal tracing module. In both Tables, the
problem size was 4096 particles and 20 iteration steps were performed. Results
were validated against the sequential implementation.

Users can turn this tracing feature when building the runtime and produce
these statistics through an internal Frangollo call. In addition to this simple
profiler module, we have experimental support for the Extrae tracing library,
that enables us to perform detailed performance analysis with the Paraver [3]
tool.

3.2 Mandelbrot computation set

Listing 1.2 shows an implementation using a Monte-Carlo method to compute
the area of the Mandelbrot set using OpenACC.

When creating the parameters for the kernel launch, YaCF indicates to the
runtime that the numoutside parameter requires a reduction operation and ex-
pands the scalar variable to a vector. This vector stores a private copy of the
variable in each thread. Later, both CUDA and OpenCL components of the
runtime, using a separated and optimized kernel, perform the reduction oper-
ation. The reduction operation is not performed during kernel execution, but
later on when the variable is transferred back to the device, or if the variable
were required by another kernel.

1 #pragma acc k e r n e l s loop reduct ion (+: numoutside) p r i va t e (i , j) copyin (
npoints , c [npo ints]) copy (numoutside)

2 for (i = 0 ; i < npoints ; i++) {
3 z . creal = c [i] . creal ; z . cimag = c [i] . cimag ;
4 for (j = 0 ; j < MAXITER ; j++) {
5
6 i f (z is outside set) {
7 numoutside++;
8 break ;
9 }

10 } /∗ for j ∗/
11 } /∗ for i ∗/

Listing 1.2: The Mandelbrot set computation in OpenACC

Another issue that has a large impact on the performance of the CUDA
code is the number of threads per block, particularly in the presence of irregular
computations. Figure 2 shows the variability of the execution time while changing
the number of threads. This variability reflects the significance of a proper launch

Fig. 2: Execution time of the implementation greatly varies in terms of the number of
threads, using N = 32768 points. Besides, the optimal number of threads varies from
Tesla C1060 to Tesla C2050.

grid configuration. Our compiler extracts compute intensity information from
the kernel (i.e, relation between floating point operations and memory accesses)
and passes the information to the runtime through the launchkernel API call,
together with additional information about the loop, like boundaries, number
of iterations, etc. This information is used to guess a first estimation to the
number of threads per block. In case the user wants to influence this choice,
an environment variable which varies the relation between floating point and
memory operations is available.

For the CUDA component, a second estimator, which attempts to maximize
the occupancy rate of the multiprocessors, is used. Information extracted from
the PTX feeds this estimator. Using this two-tier system, we can guess a suitable
number of threads for the target platform without user intervention. Current
implementation features an environment variable which enables user to force a
particular threads per block number and disables the thread estimation.

3.3 Rodinia Benchmarks

In order to complete our computational experience, in this Section we present
performance comparisons for two benchmarks taken from the Rodinia suite [2].
Rodinia comprise compute-heavy applications meant to be run in the massively
parallel environment of a GPU, and cover a wide range of applications. From
this suite we have selected SRAD and NW for our experiments, and we present
results for M1 and M4 platforms in Figures 3 and 4.

(a) SRAD (b) NW

Fig. 3: Performance comparison of accULL using M1b versus native implementation,
showing the speedup against OpenMP. Although native implementation clearly out-
performs both OpenMP and accULL implementations, the coding effort of OpenACC
is lower than the required to write both CUDA and OpenCL implementations.

(a) SRAD (b) NW

Fig. 4: Performance comparison using M4 of accULL versus native implementation,
showing the speedup against OpenMP gcc implementation. It seems that using Intel
OpenCL we are capable of extracting more performance from the shared memory
machine. Native implementations of OpenCL also outperforms OpenMP.

4 Conclusions and future work

As we demonstrate in Section 3, the current status of the accULL implementation
meets the requirements of a non-expert developer, and will improve the time to
solution by decreasing the overall development effort. There are several imple-
mentations of the OpenACC standard. However, they are commercial solutions
and, to our knowledge, do not currently feature support for OpenCL platforms.
Our compiler implementation of the OpenACC standard can be used as a fast-
prototyping tool to explore optimizations and alternative runtime environments.

Our runtime library can be fully detached from the compiler environment and
used together with a commercial or production-ready compiler, like LLVM or
Open64, to implement the OpenACC standard in a short time. Memory alloca-
tion, kernel scheduling, data splitting, overlapping of computation and commu-
nications or parallel reduction implementation are some of the issues that can
be tackled within Frangollo independently from the compiler.

We believe that accULL is a good choice for non-expert users to exploit GPUs
in HPC. The results we have shown in this work represent a clear improvement
in the way of increase programmability of heterogeneous architectures. These
preliminary results make us believe that our approach is worth to be explored
more deeply.

Work in progress within the framework of the accULL project includes inte-
gration with a commercial compiler, taking advantage of pre-existing autovec-
torization support, and improvement of the support for memory allocation. We
have work in progress to implement two dimensional arrays as cudaMatrix or
OCLImages to improve non-contiguous memory access. Also we are exploring
several possibilities of integration with MPI. The OpenCL component is capable
of sharing pointers with MPI buffers, and we would like to use the new features
the latest CUDA release, like GPU Direct, in the same direction. We believe that
there are still plenty of opportunities to improve performance from this point, as
this work settles the foundations of a dynamic and detachable compiler+runtime
infrastructure.

References

1. Bihan, F.B.S.: Heterogeneous multicore parallel programming for graphics process-
ing units. Sci. Program. 17, 325–336 (December 2009)

2. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A charac-
terization of the Rodinia benchmark suite with comparison to contemporary CMP
workloads. In: Proceedings of the IEEE International Symposium on Workload
Characterization. pp. 1–11. IISWC ’10, IEEE Computer Society, Washington, DC,
USA (2010)

3. Giménez, J., Labarta, J., Pegenaute, F.X., Wen, H.F., Klepacki, D., Chung, I.H.,
Cong, G., Voigtländer, F., Mohr, B.: Guided performance analysis combining profile
and trace tools. In: Proceedings of the 2010 conference on Parallel processing. pp.
513–521. Euro-Par 2010, Springer-Verlag, Berlin, Heidelberg (2011)

4. OpenACC directives for accelerators (2011), http://www.openacc-standard.org
[Online; Last accessed October-2012]

5. R. Reyes, de Sande, F.: Optimization strategies in different CUDA architectures
using llCoMP. Microprocessors and Microsystems - Embedded Hardware Design
36(2), 78–87 (Mar 2012)

6. Wolfe, M.: Implementing the PGI accelerator model. In: Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units. pp. 43–
50. GPGPU ’10, ACM, New York, NY, USA (2010)

http://www.openacc-standard.org

	accULL: An OpenACC Implementation with CUDA and OpenCL Support

